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An approximate similarity relationship is obtained that permits determination 
of the heat flux in the neighborhood of the plane of symmetry during three 
dimensional chemically nonequilibrium flow around bodies to be reduced to the 
heat flux computation at the stagnation point of an axisymmetric body. 

Among the high velocity aerodynamics problems, three-dimensional problems of the flow 
around bodies that are related to the development of vehicles moving in gliding trajectories 
in the upper layers of the atmosphere acquire special importance at this time. The effects 
of viscosity, heat conductivity, and nonequilibrium chemical reactions must be taken into 
account here to compute the heat transfer at altitudes on the order of 50-100 km. Applica- 
tion of numerical methods to the solution of such problems is often difficult since it re- 
quires the expenditure of large machine time and electron computer storage, in which c~nnec- 
tion simplified methods of solving such problems are utilized extensively in engineering 
practice. 

Approximate methods proposed earlier for the investigation of three-dimensional flow 
problems are based, as a rule, on utilization of boundary layer theory [i] and require know- 
ledge of the inviscid flow parameters on the body surface. However, the flow around a body 
surface can be described sufficiently accurately by the boundary layer equations only on an 
insignificant part of the gliding trajectory that does not include the main thermallystressed 
section. At the same time, up to now no simple approximate methods have been developed in 
practice for the investigation of heat transfer at low and moderate Reynolds numbers when 
the boundary layer mode is inapplicable. An approximate method is proposed in this paper 
for computing the heat flux to ideally catalytic surfaces of three-dimensional bodies ~hat 
is applicable in a broad range of Reynolds numbers (from low to high) and assures acceptable 
accuracy for practical applications, as comparisons with numerical solutions showed. An ana- 
logous problem was examined in [2] for chemically nonequilibrium flow in the neighborhood of 
a double curvature stagnation point. 

Let us examine the stationary three-dimensional hypersonic flow of a viscous chemically 
nonequilibrium gas around blunt bodies as the flow changes from the spreadout layer mode 
when the viscosity is substantial in the whole perturbed flow domain to a flow with a quite 
definite boundary layer. It has been shown for the flow of a homogeneous gas in the neigh- 
borhood of the plane of symmetry of blunt bodies that the problem of determining the heat 
flux on the surface of a three-dimensional body can be reduced to the problem of determining 
the heat flux at the stagnation point of an axisymmetr~c body [3]. Analysis of the re~mlts 
of numerical computations performed showed that even for chemically nonequilibrium flo~s 
around an ideally catalytic surface an analogous similarity relationship holds that connects 
the three- and one-dimensional flows. It turns out that the heat flux at this point (~ith 
coordinate x) on the spreading line of spreading of a three-dimensional body can be deter- 
mined with sufficiently good accuracy by using the relationship 

q (Re~, x) = cos ~-qo (Re*), P~e~ = ~e~ 
H cos o~ ( 1 )  

Here q0 is the heat flux at the axisymmetric stagnation point determined from the system of 
equations in which the constant number Re~ is replaced by Re=*(x), and H is the mean surface 
curvature at this point that equals the half-sum of the principal curvatures. If z = f(x, 
y) is the equation of the body surface in a Cartesian coordinate system, the free stre~m 
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Fig. 1. Heat flux distribution along the spreading line: 
l) ellipsoid, h = 70; 2) hyperboloid, k = 2.5, h = 80; 3) 
0.4 and 50; 4) paraboloid, 0.4 and 80; solid lines are the 
exact computation; 5) (1); 6) (3). q, i0 ~ W/m 2. 

Fig. 2. Heat flux at the point x = 1 on the side surface 
of elliptical paraboloids and body velocity as a function 
of flight altitude: l) k = 0.4; 2) 2.5; 3) V~. V~, km/ 
sec; h, km. 

velocity vector agrees with the z axis in direction, the origin is at the stream stagnation 
point and y = 0 is the plane of symmetry, then 

H = . . . .  
2 ] , / g  . ~-g-- . . . .  ' . . . .  ( 2 )  

For flow modes with large Reynolds numbers when the heat flux decreases in proportion 
to Re -I/2, the relationship (i) simplifies to 

q (x) = V ~ H q o .  ( 3 )  

Here the heat flux q0 is determined at the axisymmetric stagnation point for the same value 
of Re~ as q(x). 

Let us note that the relationship (i) at the stagnation point takes the form 

9 ~e~ 
q (Re=)  = qo ( ~ e ~ ) ,  ~e~ = -~ -, 

k 4 - 1  

where k is the ratio between the surface principal curvatures at this point. This relation- 
ship agrees with that set up in [2] by performing systematic numerical computations. 

For large Reynolds numbers the similarity relationship at tNe stagnation point will have 
the form 

q = qo ] / ( 1  --5 k)12. 

This formula is already independent of Re~ and agrees with an analogous formula obtained in 
boundary layer theory [4, 5]. 

To verify the validity of the similarity relationships presented above, a numerical so- 
lution was executed for the system of equations of a three-dimensional chemically nonequi- 
librium thin viscous shock layer in the neighborhood of the plane of symmetry and the system 
of equations describing the flow on the stagnation line of an axisymmetric body. A numerical 
solution method analogous to that elucidated in [6] was used. The presence of five compo- 
nents N2, 02, N, O, NO, between which dissociation, recombination and exchange reactions 
take place, was assumed in considering the chemical reactions. 

The heat flux computed at the axisymmetric stagnation point by applying (i) and (3) was 
compared with the heat flux on the side surface, obtained by an exact numerical solution, 
for different elliptical paraboloids, two-sheeted hyperboloids, and triaxis ellipsoids 
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streamlined at a zero angle of attack. The conditions in the free stream corresponded to 
motion at i00 to 50 km altitudes along a gliding earth-reentry trajectory (the dependence 
of V~ on h is presented in Fig. 2). The surface blackness coefficient was assumed equal to 
0.85, R = 0.7 m. 

Heat flux distributions along the spreading line of a triaxis ellipsoid with ratio be- 
tween the semiaxes squared of 1:2.5:0.5, of two-sheeted hyperboloids with 40 ~ semiaperture 
angle in the y = 0 plane, and an elliptic paraboloid at different points of the trajectory 
are represented in Fig. i. The change in the magnitude of the heat flux at the point x = 1 
on the side surface of different elliptical paraboloids as a function of the flight altitude 
is shown in Fig. 2. 

The best agreement between the exact and approximate solutions was obtained for the 
elliptical paraboloids. The error in relationship (i) for paraboloids with the principal 
curvature ratio k = 0.4; i; 2.5 was mainly not more than 2-3% in the whole range of alti- 
tudes. The greatest error in the approximate solution was observed for hyperboloids oi the 
60-80 km section of the trajectory at distances on the order of several bluntness radii. 
For ellipsoids the discrepancy between the approximate and the numerical solutions starts 
to increase near the body edges. 

Comparison of the exact and approximate solutions was carried out also for surfaces 
with finite catalytic properties. It was assumed that heterogeneous reactions with bo~h 
constant and temperature-dependent rate constants proceed at the wall. It turns out that 
in these cases the relationship (I) can yield large errors (up to 50%) at 60-80 km altitudes 
characterized by the strong influence of the surface catalytic properties on the value of 
the heat flux, at distance on the order of several bluntness radii R. At the same time, at 
the stagnation point itself and in a certain neighborhood~of it (at distances on the order 
of R for paraboloids and ~0.6R for ellipsoids) the relation (i) yields completely satisfac- 
tory results. 

Results of the comparison performed showed good accuracy of the similarity relation (i) 
set up, that permitted computation of the heat flux in the neighborhood of the plane of sym- 
metry of a three-dimensional body with an ideally catalytic surface to be reduced to the 
computation of the heat flux at the stagnation point of an axisymmetric body in the whole 
considered range of altitudes for the bodies investigated. Analysis of the results obtained 
also showed that the simpler relationship (3), that does not require utilization of variable 
numbers Re~* in the computations, can be applied to compute the heat flux up to 90 km ~,~iti- 
tudes. Utilization of the obtained similarity relationships permits application of a pro- 
gram to compute one-dimensional flows on the stagnation line to the solution of three-cimen- 
sional problems. 

NOTATION 

x, y, z, Cartesian coordinate system; q, heat flux; R, radius of curvature at the stag- 
nation point in plane of symmetry; Re~, Reynolds number determined by means of the fr~e 
stream parameters; V~, flight velocity; h, altitude; H, mean surface curvature; ~, ang]e be- 
tween the free stream velocity direction and the normal to the surface; k, ratio of th~ prin- 
cipal curvatures at the stagnation point. 
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